Skip main navigation

Military Health System

Hurricane Milton & Hurricane Helene

Emergency procedures are in place in multiple states due to Hurricane Milton & Hurricane Helene. >>Learn More

Incidence of Colorectal Cancer Among Active Component Service Members, 2010–2022

Image of Cancer scanning. MHS ensures military personnel and their families receive quality health care through digitally-transmitted with X-ray images reviewed by radiologists and oncologists.

Colorectal cancer, which is more predominant among men than women, has been shown to be associated with environmental and occupational risk factors experienced by military members. The Defense Medical Surveillance System was used to determine the crude and age-adjusted incidence rates of colorectal cancer among active component service members from all military services from January 1, 2010 to December 31, 2022. Results from this analysis show higher crude incidence rates of colorectal cancer among those who are older and male. The overall age-adjusted incidence rate throughout the surveillance period ranged from 3.56 (95% CI: 2.54-4.58) to 7.92 (95% CI: 5.98-9.86) cases per 100,000 person-years. Age-adjusted colorectal cancer rates were similar for males and females (4.46 and 4.33 cases per 100,000 person-years, respectively) and rates were relatively similar by service as well as race and ethnicity. This finding could be attributed to the small number of cases in this study due to better screening practices in the Military Health System. 

What are the new findings?

Although non-Hispanic Black service members have historically had the highest incidence of colorectal cancer within the U.S. military, this study observed similar rates of colorectal cancer for all races and ethnicities after adjusting for age.

What is the impact on readiness and force health protection?

Incident rates of colorectal cancer within the U.S. military increase monotonically with age, with service members over the age of 45 with the highest incidence, re-enforcing the need to promote wellness screening among military populations. The importance of the DHA guideline changes that decreased colorectal screenings to age 45 years is significant.

Background

Colorectal cancer is the third-most common cancer in incidence and mortality in the U.S.1 Even though incidence of other digestive cancers such as liver and pancreatic cancers increased during the past 20 years,2 colorectal cancer incidence in the U.S. decreased during the same period among adults aged 50 years and older.3 This decrease in colorectal cancer is partly due to increased screening, leading to early detection and treatment of pre-cancerous lesions.4 

Colorectal cancer can be caused by exposure to risk factors such as tobacco use, alcohol use, diet, body composition, and physical inactivity.5-9 There is also evidence showing an association between colorectal cancer and environmental and occupational risk factors.10-13 Active component service members (ACSM) tend to be generally healthier than the U.S. general population, but they also tend to have a higher prevalence of smoking and alcohol use, and are more likely to be exposed to occupational risk factors including radiation, particulate matter, and solvents linked to colorectal cancer.11-13

Overall, rates of colorectal cancer in U.S. military service members are lower compared to age-adjusted rates within the general U.S. population.14,15 In a study assessing incidence of numerous cancers from 2005 to 2014, the rate of colorectal cancer among ACSM was 4.5 cases per 100,000 person-years (p-yrs), with higher rates among men and African Americans.16 Another study of colorectal cancer specifically identified 1,108 incident cases of colorectal cancer among ACSM from 1997 to 2016, with a higher incident rate among men (4.4 per 100,000 p-yrs) as well as non-Hispanic Black service members (5.3 per 100,000 p-yrs).17 This study aims to build on prior analyses of incident colorectal cases among ACSM17 and describe the incidence rate of colorectal cancer among active component U.S. military service members between 2010 and 2022.

Methods

The results presented in this study include ACSM from all military services from January 1, 2010 through December 31, 2022. Data were obtained from the Defense Medical Surveillance System. Demographic data on age, military service, race and ethnicity, rank, and occupation at the time of colorectal cancer diagnosis were included. Ambulatory and inpatient administrative health records from both direct and purchased care were used to determine colorectal cancer diagnoses.

Case definition

International Classification of Diseases, 9th/10th revision diagnostic codes, along with V-codes and Z-codes indicating a qualifying treatment (radiotherapy, chemotherapy, or immunotherapy), were used to define incident cases of colon and rectum cancer (Table 1).18  Cases of appendiceal malignancies were excluded, as they are histologically different from colorectal cancer.18  An incident case of colorectal cancer was defined as either one hospitalization with a qualifying ICD-9 or ICD-10 diagnosis code in the first diagnostic position, or in the second diagnostic position if a V/Z-code indicating radiotherapy, chemotherapy, or immunotherapy treatment was in the first diagnostic position; or three or more ambulatory encounters within a 90-day period with a qualifying ICD-9/10 diagnostic code in the first or second diagnostic position.18

Click on the table to access a 508-compliant PDF version.

The date of the first case-defining hospitalization or ambulatory medical encounter was used as the incident date. Service members were counted once per lifetime. Person-time contributions for each service member were determined from January 1, 2010 to December 31, 2022. Service members and their person-time contributions were removed from the study population if a case-defining encounter was recorded prior to the start of the surveillance period on January 1, 2010. Person-time was censored when a service member left the active component or military service, and at the time of the incident diagnosis for a colorectal cancer case, whichever occurred first.

Statistical analysis

Crude and age-adjusted incident rates were calculated as incident colorectal cancer diagnoses per 100,000 p-yrs with 95% confidence intervals. The standard population used for the age-adjustment was the Military Health System ACSM population in DMSS from 2010 to 2022, and age groups were utilized for adjusting colorectal incident rates. This age adjustment gave more weight to the younger age groups that constitute a majority of the ACSM population, leading to more stable incident rates. Incident rate ratios and 95% CI were calculated to compare colorectal cancer rates by all demographic variables included in the study. All analyses were conducted using SAS (version 9.4) with a significance level set at p<0.05.

Results

During the 13-year surveillance period 741 incident cases of colorectal cancer among ACSM were recorded, corresponding to an overall crude incident rate of 4.44 (95% CI: 4.12-4.76) cases per 100,000 p-yrs (Table 2). The average age among colorectal cancer cases during the surveillance period was 39.9 years (STD=7.9, range 20-59). The distributions of incident colorectal cancer cases by select demographic characteristics are detailed in Table 2. 

Click on the table to access a 508-compliant PDF version.

Crude incidence rates were higher among men and increased with age, ranging from 0.41 (95% CI: 0.24-0.57) per 100,000 p-yrs among those ages 20-24 to 54.51 (95% CI: 42.64-66.38) per 100,000 p-yrs among those older than 50-54 years (Table 2). Only a few cases were recorded in the 55 and older age group (n=14), with some years—2013, 2015, 2019, 2021, 2022—reporting zero cases in the oldest age group (data not shown).

The overall age-adjusted incidence rate throughout the surveillance period ranged from 3.56 (95% CI: 2.54-4.58) to 7.92 (95% CI: 5.98-9.86) cases per 100,000 p-yrs (Figure 1). The age-adjusted incidence rate peaked in 2017, at 7.92 (95% CI: 5.98-9.86) cases per 100,000 p-yrs, and then fluctuated for the rest of the surveillance period (Figure 1).

This graph is comprised of 13 discrete vertical lines, each of which represents both the standard deviation and, at its midpoint, the age-adjusted rate of colorectal cancer incidence for an individual year, from 2010 to 2022, for active component service members 20 to 59 years of age. The rates of incidence are expressed per 100,000 person-years. Generally, the average rate of colorectal cancer incidence ranged between 3.5 and 5 (per 100,000 person-years), with notable deviations in 2014, 2017 and 2022. The average rate was slightly elevated in 2022, at just over 5.5 (per 100,000 person-years). Both 2014 and 2017 had wider standard deviations and higher average rates, of 6 and 8, respectively.

Age-adjusted colorectal rates were similar for men and women (4.46 [95% CI: 4.11-4.80] and 4.33 [95% CI: 3.49-5.17] cases per 100,000 p-yrs, respectively), and rates were relatively similar by service (Table 2). 

Age-adjusted rates were also similar for all races and ethnicities, ranging from 4.34 (95% CI: 3.56-5.12) cases per 100,000 p-yrs among non-Hispanic Blacks to 4.63 (95% CI: 3.65-5.62) cases per 100,000 p-yrs among Hispanics (Table 2). The incident rate ratio was also relatively similar for all races and ethnicities, with no statistical significance when compared to non-Hispanic Whites (Table 2). 

Service members in the pilot/air crew occupation category had the highest age-adjusted colorectal incident rate (6.03 [95% CI: 4.31-7.74]), followed by those in motor transportation (5.20 [95% CI: 2.50-7.90]) (Table 2). There was no significant difference, however, in the incident rate ratio for all occupation groups when compared to the reference group (infantry/artillery/armor/combat) (Table 2).

Discussion

This analysis shows a higher crude incidence rate of colorectal cancer among those 50 to 54 years of age; a previous study of the active component military population, from 1997 to 2016, found similar results.17 Age-adjusted colorectal cancer incident rates did not show any temporal trends during the study period, except for an increase in 2017. The prior study of colorectal cancer among ACSM from 1997 to 2016 also observed no temporal trends after adjusting for age.17 The lack of temporal trends in the military population diverges from general U.S. population data, which from 2011 to 2019 have shown a 1% annual decrease.19 This difference between the two populations could be due to the limited number of cases among ACSM, in turn leading to few cases among the younger (20-29 years) and older (55+ years) age groups. 

The high incidence of colorectal cancer among service members in the pilot/aircrew occupation correlates with prior surveillance reports.17 While this occupation accounts for the highest rate of colorectal cancer, a recent study of military pilots showed evidence that aircrew colorectal cancers were statistically lower in the military population when compared to the general U.S. population, by 44%.20,21 Lower rates among ACSM may be attributed to universal health care and improved access to screenings for early pre-cancerous detection and treatment. 

Older, White males have historically demonstrated greater use of colorectal cancer screenings within the MHS.22 This study did not observe, after adjusting for age, any significant colorectal cancer rate differences between races and ethnicities (Table 2) that could indicate racial differences in health care access and screening. Recent Defense Health Agency guideline changes that lowered the recommended age for colorectal screenings to age 45, combined with promotion of non-invasive colorectal cancer screenings and universal health care for all ACSM, may be contributing factors to the uniform incident rate among races and ethnicities.22,23 Continued surveillance of colorectal cancer among ACSM is necessary for understanding the true burden of colorectal cancer within the MHS.

One of this study's primary limitations is that it did not use the DOD’s cancer registry system, Oncolog, formerly known as the ACTUR. Oncolog includes cancer data reported by military hospitals and clinics for all DOD beneficiaries. Because this study relies solely on medical encounter data and does not incorporate Oncolog case reports, it may not include all colorectal cancer cases. Further studies should include both Oncolog and medical encounter data. Efforts are currently underway to determine true estimates of cancer diagnoses and treatment outside the MHS through the incorporation of data shared from state cancer registries.24 

This study did not adjust for modifiable risk factors shown to increase risk of colorectal cancer such as obesity, physical inactivity, smoking, alcohol consumption, or environmental exposures.5-10 The active component military population tends to be engaged in more physical activity, is required to pass routine physical fitness examinations, and must maintain a healthy body weight, and thereby is less likely to be overweight or obese compared to the general U.S. population.21 These protective factors can be accredited to overall lower colorectal incidence rates within the U.S. military. Exposure to environmental toxins attributed to increased risk of colorectal cancer may be greater in this group, however, especially during deployment. Including deployment location and length of deployment in further analyses is important. 

Author Affiliations

Defense Health Agency, Armed Forces Health Surveillance Division, Silver Spring, MD: Dr. Mabila, Ms. McQuistan, Ms. Murray. 

Disclaimer

The views expressed in this article are those of the authors and do not necessarily reflect the official policy of the Department of Defense nor the U.S. Government. 

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2022;72(1):7-33. doi:10.3322/caac.21654
  2. Gordon-Dseagu VL, Devesa SS, Goggins M, Stolzenberg-Solomon R. Pancreatic cancer incidence trends: evidence from the Surveillance, Epidemiology and End Results (SEER) population-based data. Int J Epidemiol. 2018;47(2):427-439. doi:10.1093/ije/dyx232
  3. Siegel RL, Torre LA, Soerjomataram I, et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut. 2019;68(12):2179-2185. doi:10.1136/gutjnl-2019-319511
  4. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683-691. doi:10.1136/gutjnl-2015-310912
  5. National Center for Chronic Disease Prevention Health Promotion Office on Smoking Health. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Centers for Disease Control and Prevention (U.S.); 2014.
  6. Bagnardi V, Rota M, Botteri E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2014:1-14. doi:10.1038/bjc.2014.579
  7. World Cancer Research Fund International, American Institute for Cancer Research. Meat, Fish and Dairy Products and the Risk of Cancer: Continuous Update Project Expert Report. 2018.
  8. World Cancer Research Fund International, American Institute for Cancer Research. Wholegrains, Vegetables and Fruit and the Risk of Cancer: Continuous Update Project Expert Report. 2018.
  9. World Cancer Research Fund International, American Institute for Cancer Research. Other Dietary Exposures and the Risk of Cancer: Continuous Update Project Expert Report. 2018.
  10. Matich EK, Laryea JA, Seely KA, Stahr S, Su LJ, Hsu PC. Association between pesticide exposure and colorectal cancer risk and incidence: a systematic review. Ecotoxicol Environ Saf. 2021;219:112327. doi:10.1016/j.ecoenv.2021.112327
  11. Weese CB, Abraham JH. Potential health implications associated with particulate matter exposure in deployed settings in southwest Asia. Inhal Toxicol. 2009;21(4):291-296. doi:1080/08958370802672891
  12. Aurell J, Gullett BK, Yamamoto D. Emissions from open burning of simulated military waste from forward operating bases. Environ Sci Technol. 2012;46(20):11004-11012. doi:10.1021/es303131k
  13. Lowers HA, Todorov R, Strand MJ, et al. Lung biopsies from symptomatic military deployers have variable mineral particle types and higher abundances of silicon, aluminum, cadmium and vanadium compared to controls. Am J Respir Crit Care Med. 2015;191:A2575.
  14. Zhu K, Devesa SS, Wu H, et al. Cancer incidence in the U.S. military population: comparison with rates from the SEER program. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1740-1745.
  15. Bytnar JA, Shriver CD, Zhu K. Incidence rates of digestive cancers among U.S. military servicemen: comparison with the rates in the general U.S. population. PLoS One. 2021;16(9):e0257087. doi:10.1371/journal.pone.0257087
  16. Lee T, Williams VF, Clark LL. Incident diagnoses of cancers in the active component and cancer-related deaths in the active and reserve components, U.S. Armed Forces, 2005-2014. MSMR. 2016;23(7):23-31.
  17. Stahlman S, Oetting A. Age-period-cohort analysis of colorectal cancer, service members aged 20-59 years, active component, U.S. Armed Forces, 1997-2016. MSMR. 2017;24(7):12-19.
  18. Armed Forces Health Surveillance Division. Surveillance Case Definition. Colorectal Cancer. Nov. 2022. www.health.mil/Reference-Center/Publications/2022/11/01/Colorectal-Cancer
  19. Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023;73(3):233-254.
  20. Department of Defense. Study on Incidence of Cancer Diagnoses and Mortality Among Military Aviators and Aviation Support Personnel. 2023. https://www.health.mil/Reference-Center/Reports/2023/02/09/Study-on-the-Incidence-of-Cancer-Diagnosis-and-Mortality-among-Military-Aviators-and-Aviation-Support-Personnel
  21. Siegel RL, Fedewa SA, Anderson WF, et al. Colorectal cancer incidence patterns in the United States, 1974-2013. J Natl Cancer Inst. 2017;109(8):djw322. doi:10.1093/jnci/djw322
  22. Debarros M, Steele SR. Colorectal cancer screening in an equal access healthcare system. J Cancer. 2013;4(3):270-280. doi:10.7150/jca.5833
  23. Hammer, R. Colorectal Cancer Screening Age Decreases to 45. Accessed Apr. 27, 2023. https://health.mil/News/Articles/2022/11/22/Colorectal-Cancer
  24. Stahlman S, Clerkin C, Kohler B, Howe W Jr, Cronin K, Wells N. Brief report: Phase I results using the virtual pooled registry cancer linkage system for military cancer surveillance. MSMR. 2022;29(7):26-27.

You also may be interested in...

Article
Sep 1, 2022

Evaluation of the MSMR Surveillance Case Definition for Incident Cases of Hepatitis C

U.S. Marine Corps Lance Cpl. Angel Alvarado, a combat graphics specialist, donates blood for the Armed Services Blood Program (ASBP).

The validity of military hepatitis C virus (HCV) surveillance data is uncertain due to the potential for misclassification introduced when using administrative databases for surveillance purposes. The objectives of this study were to assess the validity of the surveillance case definition used by the Medical Surveillance Monthly Report (MSMR) for HCV ...

Report
Aug 1, 2022

MSMR Vol. 29 No. 08 - August 2022

.PDF | 822.83 KB

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the ...

Article
Aug 1, 2022

Brief Report: Pain and Post-Traumatic Stress Disorder Screening Outcomes Among Military Personnel Injured During Combat Deployment.

U.S. Air Force Airman 1st Class Miranda Lugo, right, 18th Operational Medical Readiness Squadron mental health technician and Guardian Wingman trainer, and Maj. Joanna Ho, left, 18th OMRS director of psychological health, discuss the suicide prevention training program, Guardian Wingman, at Kadena Air Base, Japan, Aug. 20, 2021. Guardian Wingman aims to promote wingman culture and early help-seeking behavior. (U.S. Air Force photo by Airman 1st Class Anna Nolte)

The post-9/11 U.S. military conflicts in Iraq and Afghanistan lasted over a decade and yielded the most combat casualties since the Vietnam War. While patient survivability increased to the high­est level in history, a changing epidemiology of combat injuries emerged whereby focus shifted to addressing an array of long-term sequelae, including ...

Article
Aug 1, 2022

Musculoskeletal Injuries During U.S. Air Force Special Warfare Training Assessment and Selection, Fiscal Years 2019–2021.

U.S. Air Force Capt. Hopkins, 351st Special Warfare Training Squadron, Instructor Flight commander and Chief Combat Rescue Officer (CRO) instructor, conducts a military free fall equipment jump from a DHC-4 Caribou aircraft in Coolidge, Arizona, July 17, 2021. Hopkins is recognized as the 2020 USAF Special Warfare Instructor Company Grade Officer of the Year for his outstanding achievement from January 1 to December 31, 2020.

Musculoskeletal (MSK) injuries are costly and the leading cause of medical visits and disability in the U.S. military.1,2 Within training envi­ronments, MSK injuries may lead to a loss of training, deferment to a future class, or voluntary disenrollment from a training pipeline, all of which are impediments to maintaining full levels of manpower and ...

Report
Jul 1, 2022

MSMR Vol. 29 No. 07 - July 2022

.PDF | 1.67 MB

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the ...

Article
Jul 1, 2022

Brief Report: Phase I Results Using the Virtual Pooled Registry Cancer Linkage System (VPR-CLS) for Military Cancer Surveillance.

A patient at Naval Hospital Pensacola prepares to have a low-dose computed tomography test done to screen for lung cancer. Lung cancer is the leading cause of cancer-related deaths among men and women. Early detection can lower the risk of dying from this disease. (U.S. Navy photo by Jason Bortz)

The Armed Forces Health Surveillance Division, as part of its surveillance mission, periodically conducts studies of cancer incidence among U.S. military service members. However, service members are likely lost to follow-up from the Department of Defense cancer registry and Military Health System data sets after leaving service and during periods of ...

Article
Jul 1, 2022

Establishment of SARS-CoV-2 Genomic Surveillance Within the Military Health System During 1 March–31 December 2020.

Dr. Peter Larson loads an Oxford Nanopore MinION sequencer in support of COVID-19 sequencing assay development at the U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland. (Photo by John Braun Jr., USAMRIID.)

This report describes SARS-CoV-2 genomic surveillance conducted by the Department of Defense (DOD) Global Emerging Infections Surveillance Branch and the Next-Generation Sequencing and Bioinformatics Consortium (NGSBC) in response to the COVID-19 pandemic. Samples and sequence data were from SARS-CoV-2 infections occurring among Military Health System ...

Article
Jul 1, 2022

Suicide Behavior Among Heterosexual, Lesbian/Gay, and Bisexual Active Component Service Members in the U.S. Armed Forces.

  The DOD’s theme for National Suicide Prevention Month is “Connect to Protect: Support is Within Reach.” Deployments, COVID-19 restrictions, and the upcoming winter season are all stressors and potential causes for depression that could lead to suicidal ideations. Options are available to individuals who are having thoughts of suicide and those around them (Photo by Kirk Frady, Regional Health Command Europe).

Lesbian, gay, and bisexual (LGB) individuals are at a particularly high risk for suicidal behavior in the general population of the United States. This study aims to determine if there are differences in the frequency of lifetime suicide ideation and suicide attempts between heterosexual, lesbian/gay, and bisexual service members in the active ...

Article
Jul 1, 2022

Surveillance Trends for SARS-CoV-2 and Other Respiratory Pathogens Among U.S. Military Health System Beneficiaries, 27 September 2020–2 October 2021.

Staff Sgt. Misty Poitra and Senior Airman Chris Cornette, 119th Medical Group, collect throat swabs during voluntary COVID-19 rapid drive-thru testing for members of the community while North Dakota Army National Guard Soldiers gather test-subject data in the parking lot of the FargoDome in Fargo, N.D., May 3, 2020. The guardsmen partnered with the N.D. Department of Health and other civilian agencies in the mass-testing efforts of community volunteers. (U.S. Air National Guard photo by Chief Master Sgt. David H. Lipp)

Respiratory pathogens, such as influenza and adenovirus, have been the main focus of the Department of Defense Global Respiratory Pathogen Surveillance Program (DoDGRPSP) since 1976.1. However, DoDGRPSP also began focusing on SARS-CoV-2 when COVID-19 was declared a pandemic illness in early March 2020.2. Following this declaration, the DOD quickly ...

Article
Jun 1, 2022

Hospitalizations, Active Component, U.S. Armed Forces, 2021

The hospitalization rate in 2021 was 48.0 per 1,000 person-years (p-yrs), the second lowest rate of the most recent 10 years. For hospitalizations limited to military facilities, the rate in 2021 was the lowest for the entire period. As in prior years, the majority (71.2%) of hospitalizations were associated with diagnoses in the categories of mental ...

Article
Jun 1, 2022

Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

In 2021, the overall numbers and rates of active component service member ambulatory care visits were the highest of any of the last 10 years. Most categories of illness and injury showed modest increases in numbers and rates. The proportions of ambulatory care visits that were accomplished via telehealth encounters fell to under 15% in 2021, compared ...

Skip subpage navigation
Refine your search
Last Updated: November 06, 2023
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on X Follow us on YouTube Sign up on GovDelivery