Skip main navigation

Military Health System

Hurricane Milton & Hurricane Helene

Emergency procedures are in place in multiple states due to Hurricane Milton & Hurricane Helene. >>Learn More

Update: Incidence of Inguinal Hernia and Repair Procedures and Rate of Subsequent Pain Diagnoses, Active Component Service Members, U.S. Armed Forces, 2010–2019

Image of 2. Senegalese and Vermont National Guard medical care professionals repair a hernia at the Hopital de la Paix in Ziguinchor, Senegal, Feb. 14, 2018. Vermont Guardsmen work alongside Senegalese medical personnel to obtain real-world experience while providing valuable medical services as part of a Medical Readiness Training Exercise. (U.S. Army National Guard photo by Sgt. Avery Cunningham)

What Are the New Findings?

The crude rate of incident inguinal hernia diagnoses between 2010 and 2019 among U.S. active component service members was 34.3 per 10,000 person-years, with a modest decline over the surveillance period. Among the 44,898 incident inguinal hernia diagnoses, 22,349 were followed by an open or laparoscopic repair and among these, 6,276 (28.1%) had a pain diagnosis within 1 year.

What Is the Impact on Readiness and Force Health Protection?

For service members, inguinal hernias can result in reduced operational readiness due to lost duty time or medical evacuation from theater. Persistent pain from hernia repair surgeries can interfere with job duties and requirements for meeting standards of physical fitness. This study identifies subgroups of service members at higher risk for inguinal hernia and subsequent pain diagnosis.

Abtract

An inguinal hernia occurs when an internal organ protrudes through a tear or weak spot in the abdominal muscles. Among U.S. military service members, inguinal hernia is the fourth most prevalent digestive condition in terms of individuals affected and number of medical encounters. This study found that the overall incidence of inguinal hernia diagnoses between 2010 and 2019 among U.S. active component service members was 34.3 per 10,000 person-years. Older service members, males, non-Hispanic whites, and those in combat-specific occupations had comparatively higher incidence rates. Among the 44,898 incident inguinal hernia diagnoses during the surveillance period, 22,349 were followed by an open or laparoscopic inguinal hernia repair procedure. Of these, 12,210 (54.6%) were open and 10,139 (45.4%) were laparoscopic. Among the 22,349 inguinal hernia repair procedures, 6,276 (28.1%) were followed by pain diagnoses within 1 year after the repair procedures. Although the incidence of inguinal hernia diagnoses among active component service members decreased modestly during the surveil ace period, the rate of hernia repair peaked in 2013, and the frequency of diagnoses of pain following hernia repair increased between 2010 and 2019.

Background

An inguinal hernia occurs when an internal organ, usually part of the small intestine, protrudes into the inguinal canal through a tear or weak spot in the abdominal muscles. Inguinal hernias usually present as a lump in the groin that goes away with mild pressure or while lying down.1 They can have many acquired causes, such as increased pressure on the abdomen due to strenuous activity, pregnancy, obesity, and chronic coughing or sneezing. Additional risk factors include being male, white, older, having a family history of inguinal hernia, and having a previous inguinal hernia or hernia repair (such as in childhood).2

Among U.S. military service members, inguinal hernia is the fourth most prevalent digestive condition in terms of individuals affected and number of medical encounters, exceeded in frequency only by diagnoses of esophageal disease, other gastroenteritis and colitis, and constipation.3 In 2019, there were 10,853 encounters for inguinal hernia among 4,568 affected service members.3 Inguinal hernias can also affect military readiness, particularly when they result in evacuations from theaters of operations. Among male service members, inguinal hernia was the second most common reason for medical evacuation from the Central Command Area of Responsibility (CENTCOM AOR) in 2019 (n=31).4 The incidence of inguinal hernia among active component service members between 2005 and 2014 was 33.8 per 10,000 person-years (p-yrs), with rates being higher among males, non-Hispanic whites, older personnel, and those in combat-specific occupations.5

Inguinal hernia repair is one of the most common operations performed in the U.S., with more than 800,000 repairs done annually.6 Options for surgical repair include open or laparoscopic repair. Open mesh repair is the preferred repair technique for primary inguinal hernia because it is reproducible by nonspecialist surgeons and is less likely to lead to recurrence, but primary suture repair can be performed when mesh is contraindicated.1,6 Compared to open repair, laparoscopic repair is associated with longer operation times but less severe postoperative pain, fewer complications, and quicker return to normal physical activities.6

Pain persisting beyond the first few days following hernia repair is the primary complication of inguinal hernia repair and is reported in 3–39% of patients.6–11 The relatively wide range of estimates for occurrence of pain following hernia repair can be attributed to the variation in patient populations studied, the severity of pain reported, and the time elapsed since hernia repair. In addition, there are varying definitions of chronic pain following hernia repair. Recent guidelines for prevention and management of postoperative pain following hernia repair recommend that chronic pain be defined as pain lasting at least 6 months after operation, as some patients may improve substantially between 3 and 6 months postoperation.8,12 Chronic, disabling pain beyond 1 year is believed to occur in a small percentage of patients (<1%).In hernia repairs, chronic pain can be caused by nerve injuries sustained during the surgery, inflammation, ischemia, or neuropathy; however, the true cause is often multifactorial and difficult to distinguish in a given patient.6–8 Chronic pain has also been previously associated with high levels of preoperative pain, younger age, an anterior surgical approach, and a postoperative complication.1

The objective of this study was to examine the incidence of inguinal hernia diagnoses, the incidence of open and laparoscopic inguinal hernia repair procedures, and the proportion and rate of pain diagnoses (including both acute and chronic pain) following inguinal hernia repair, among active component service members between 2010 and 2019.

Methods

The surveillance period was 1 Jan. 2010 through 31 Dec. 2019. The surveillance population included all active component service members of the U.S. Army, Navy, Air Force, and Marine Corps who served at any time during the surveillance period. Records of inpatient and outpatient encounters documented in the Defense Medical Surveillance System were used to ascertain cases of inguinal hernia, inguinal hernia repair procedures, and pain diagnoses.

An incident case of inguinal hernia was defined by having an inguinal hernia diagnosis (International Classification of Diseases, 9th revision [ICD-9]: 550.*; 10th revision [ICD-10]: K40.*) in any diagnostic position of an inpatient or outpatient encounter. A service member could be counted only once per lifetime and the incident date was the date of the first qualifying encounter. Incident cases that occurred before the start of the surveillance period were excluded. For the purpose of measuring the incidence of inguinal hernia diagnoses, person-time was censored at the time of the incident inguinal hernia diagnosis, when the service member left service, or at the end of the surveillance period (whichever came first). Incidence rates were calculated per 10,000 p-yrs.

The incidence of inguinal hernia repair procedures was measured among the incident inguinal hernia cases identified during the surveillance period. Open and laparoscopic hernia repair procedures were defined by the presence of an inpatient or outpatient encounter with a qualifying ICD-9 or ICD-10 procedure code, or Current Procedural Terminology (CPT) code, in any procedural position (Table 1). The first occurring repair procedure recorded on or after the incident inguinal hernia diagnosis was selected and an individual could be counted as having a repair procedure only once during the surveillance period. For the purpose of measuring incidence of inguinal hernia repair procedures, the person-time began to accrue at the time of the incident inguinal hernia diagnosis, and was censored at the time of the first inguinal hernia repair procedure, when the service member left service, or at the end of the surveillance period (whichever came first). Repair rates were calculated per 100 p-yrs.

The occurrence of post-procedural inguinal hernia repair pain was measured in the year following the first inguinal hernia repair procedure using ICD-9 and ICD-10 diagnoses for postoperative pain, abdominal pain, testicular pain, and mononeuritis of the lower limb (Table 2). These ICD-9 and ICD10 codes were selected in consultation with DOD pain medicine physicians, and were based on codes that would be most likely to represent the diagnosis of inguinal pain after hernia surgery. The first inpatient or outpatient encounter with a qualifying pain diagnosis in any diagnostic position, occurring within 1 year after the inguinal hernia repair procedure, was selected. For the purpose of measuring rates of pain diagnoses following inguinal hernia repair procedures, the person-time began to accrue at the time of the incident inguinal hernia repair procedure, and was censored at the time of the first pain diagnosis, when the service member left service, or at the end of the surveillance period (whichever came first). Rates of pain diagnoses were calculated per 100 p-yrs.

Covariates included age group, sex, race/ethnicity group, service branch, rank/grade, and military occupation. A prior pain diagnosis was defined by having an inpatient or outpatient encounter with a pain diagnosis (Table 2) in any diagnostic position on or before the inguinal hernia repair procedure.

Results

During 2010–2019, the crude overall incidence of inguinal hernia diagnoses among active component service members was 34.3 per 10,000 p-yrs (Table 3). Compared to their respective counterparts, males (39.5 per 10,000 p-yrs), nonHispanic whites (39.8 per 10,000 p-yrs), senior officers (57.7 per 10,000 p-yrs), and those in combat-specific occupations (42.0 per 10,000 p-yrs) had higher overall rates. Overall rates of incident inguinal hernia diagnoses increased with increasing age, with service members aged 45 years or older having more than 3 times the rate of those less than 20 years of age. Crude annual incidence rates of inguinal hernia diagnoses decreased slightly over the course of the 10-year surveillance period, from 36.4 per 10,000 p-yrs in 2010 to 30.4 per 10,000 p-yrs in 2019 (Figure 1).

Among the 44,898 incident inguinal hernia diagnoses during the surveillance period, 22,349 were followed by open or laparoscopic inguinal hernia repair procedures (Table 4). Of these, 12,210 (54.6%) were open and 10,139 (45.4%) were laparoscopic. The proportion of incident inguinal hernia diagnoses with subsequent laparoscopic repairs increased annually over the course of the surveillance period, from 11.5% in 2010 to 28.4% in 2019 (data not shown). In contrast, the proportion treated by open repairs peaked in 2013 at 32.5% and then decreased to 21.6% by 2019 (data not shown). The overall incidence rate of repair among those with incident inguinal hernia diagnoses during the surveillance period, was 32.3 per 100 p-yrs (Table 4). Compared to their respective counterparts, males (32.8 per 100 p-yrs), service members less than 20 years of age (158.2 per 100 p-yrs), non-Hispanic whites (34.2 per 100 p-yrs), Marine Corps members (49.3 per 100 p-yrs), junior enlisted personnel (59.2 per 100 p-yrs), and service members in combat-specific occupations (43.7 per 100 p-yrs) had higher overall rates of hernia repair.

Among the 22,349 inguinal hernia repair procedures, 6,276 (28.1%) were followed by pain diagnoses within 1 year after the repair procedures (Table 5, Figure 2). The proportions with pain diagnoses in the year following surgery were similar for those with laparoscopic (27.5%) and open (28.6%) repair procedures (data not shown). The proportion with a pain diagnosis in the year following surgery increased from 17.1% in 2010 to 31.5% in 2019 among males and from 25.0% in 2010 to 52.6% in 2019 among females (data not shown). Overall, the percentages of inguinal hernia repairs with pain diagnoses in the following year were highest during the last 3 years of the surveillance period and ranged from 31.8% in 2017 to 32.3% in 2018 (data not shown). Among those with an inguinal hernia repair procedure, the overall rate of pain in the subsequent year was 40.1 per 100 p-yrs (Table 5).

Compared to their respective counterparts, females (67.3 per 100 p-yrs), service members less than 20 years of age (58.2 per 100 p-yrs), Hispanics (46.2 per 100 p-yrs), Army members (50.1 per 100 p-yrs), enlisted personnel (junior 49.1 per 100 p-yrs; senior 40.5 per 100 p-yrs), and those with a prior pain diagnosis (59.7 per 100 p-yrs) had higher overall rates of pain diagnoses. Among those with a pain diagnosis in the year following hernia repair, 30.7% (n=2,975) had a pain diagnosis within the first 3 months, 27.4% (n=2,658) had a diagnosis within 3-6 months after, 22.8% (n=2,214) within 6-9 months after, and 19.1% (n=1,855) had a pain diagnosis within 9-12 months following repair (data not shown). Abdominal pain was the most frequently diagnosed type of pain, which occurred among 85.3% (n=5,352) of those with any pain diagnosis, followed by acute postoperative pain (19.5%, n=1,224), testicular pain (17.2%, n=1,079), chronic postoperative pain (7.5%, n=471), pelvic pain (3.8%, n=240), and mononeuritis (3.3%, n=209) (data not shown).

Editorial Comment

This study found that the overall incidence rate of inguinal hernia diagnoses among active component service members was 34.3 per 10,000 p-yrs between 2010 and 2019. In addition, older service members, males, non-Hispanic whites, and those in combat-specific occupations had comparatively higher rates of incident inguinal hernia diagnoses. These patterns are consistent with previously identified risk factors in the civilian population and are also similar to findings from a prior MSMR report.2,5 Service members with pre-existing abdominal hernias would be screened and precluded from joining military service; however, results of this analysis indicate that a sizable proportion of service members develop hernias while in uniform. Of interest is the positive association between combat-specific occupations and incidence of inguinal hernia, which suggests that strenuous physical activity or traumatic injury could play a role in increasing risk among younger service members, although this could not be confirmed using the available data.

In addition, this study found that while the crude annual incidence rates of inguinal hernia diagnoses among active component service members decreased modestly during the surveillance period, the rate of hernia repair peaked in 2013, and the rates of pain following hernia repair increased between 2010 and 2019. The proportion of inguinal hernias treated by subsequent laparoscopic repair increased from 11.5% in 2010 to 28.4% in 2019. In contrast, the proportion treated by open repair peaked in 2013 at 32.5% and then decreased to 21.6% by 2019. This pattern of change is not surprising given that the laparoscopic technique has grown in popularity in the U.S., with estimates ranging from 16.8% to 41.0% of all inguinal hernia operations.13However, this did not correlate with decreased pain outcomes, as the percentages of inguinal hernia repairs with pain diagnoses in the following year were highest during the last 3 years of the surveillance period, ranging from 31.6% in 2017 to 32.2% in 2018, and the overall proportions of laparoscopic and open procedures with pain diagnoses in the following year were roughly similar (27.5% and 28.6%, respectively).

During the 10-year surveillance period, open repair remained the most common procedure type overall, and was performed at a rate of 17.6 per 100 p-yrs following inguinal hernia diagnosis, compared to 14.7 per 100 p-yrs for laparoscopic repair. However, by 2019, a greater proportion of inguinal hernias were being treated by laparascopy (28.4%) than by open repair (21.6%). Males, younger personnel, and those in combat specific occupations were more likely than their respective counterparts to have repair procedures following incident inguinal hernia diagnoses. The reasons for these findings are unclear but may be related to the severity of the incident hernia. It is also possible that the nature of a service member's duties may precipitate the decision to undergo hernia repair.

For service members, persistent pain can interfere with job duties and requirements for meeting standards of physical fitness. This study indicated that pain following inguinal hernia repair was more common among women, younger personnel, and those with prior abdominal or groin pain diagnoses. These results are consistent with findings from international surveys of self-reported pain following hernia surgery.11,14 Pain persisting after hernia repair can be treated using physical therapy, pharmacological analgesics, injections with local anesthetics, sensory stimulation or ablation of nerves, and surgery.1,6,8 Anti-inflammatory agents are recommended as the first line of treatment, and if these are unsuccessful then nerve blocks (injection of anesthetic on or near the nerve/pain receptor) can be used.When these treatments have failed, then neurectomy may be necessary.6

There are several limitations to this study. The primary limitation was that pain was ascertained using ICD-9 and ICD-10 codes for post-operative pain, abdominal pain, testicular pain, and mononeuritis. The lack of a specific ICD diagnosis code for post-inguinal herniorrhaphy pain likely led to the capture of incidents of pain unrelated to the hernia repair procedure; however, the surveillance period was restricted to the year following hernia repair in order to reduce the likelihood of this occurring. A further limitation to this approach is that pain persisting for longer than 1 year following hernia repair could not be assessed, as it was more likely that these pain diagnoses could be related to other conditions or procedures aside from hernia repair. In addition, data were not available for lost duty time or disability due to pain following hernia or hernia repair. Hernia diagnoses, repair procedures, and pain diagnoses occurring in deployed settings were not assessed. However, it is expected that most hernia repairs occurring as a result of inguinal hernia sustained during deployment would be captured since service members would likely be medically evacuated out of theater for this procedure. Procedures and diagnoses that occurred after a service member left service, or were paid for out of pocket, were also not captured.

For service members, inguinal hernias can result in reduced operational readiness, and persistent pain from hernia repair surgeries can interfere with job duties and physical fitness requirements. Service members at higher risk for pain following hernia repair, such as female service members, younger personnel, those with prior abdominal or groin pain diagnoses, and those with prior repair procedures, should be monitored and treated according to best practice guidelines if the pain does not subside.8

Acknowledgment: The authors thank CAPT Eric Stedje-Larsen, MD, Program Director, Pain Medicine, Naval Medical Center Portsmouth, for providing ICD codes to identify pain following hernia repair.

References

  1. Jenkins JT, O'Dwyer PJ. Clinical review: Inguinal hernias. BMJ. 2008;336(7638):269–272.
  2. Mayo Clinic Staff. Inguinal hernia. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/ inguinal-hernia/symptoms-causes/syc-20351547. Accessed 9 August 2020. 
  3. Armed Forces Health Surveillance Branch. Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2019. MSMR. 2020;27(5):2–9.
  4. Armed Forces Health Surveillance Branch. Medical evacuations out of U.S. Central Command, active and reserve components, U.S. Armed Forces, 2019. MSMR. 2020;27(5):27–32.
  5. O’Donnell FL, Taubman SB. Incidence of abdominal hernias in service members, active component, U.S. Armed Forces, 2005–2014. MSMR. 2016;23(8):2–10.
  6. Hammoud M and Gerken J. Inguinal hernia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan. 2020 Apr 27.
  7. Condon RE. Groin pain after hernia repair. Ann Surg. 2001;233(1):8.
  8. Andresen K and Rosenberg J. Management of chronic pain after hernia repair. J Pain Res. 2018; 11:675–681.
  9. Poobalan AS, Bruce J, King PM, et al. Chronic pain and quality of life following open inguinal hernia repair. BJS. 2001;88(8):1122–1126.
  10. Courtney CA, Duffy K, Serpell MG, and O’Dwyer PJ. Outcome of patients with severe chronic pain following repair of groin hernia. BJS. 2002;89(10):1310–1314.
  11. Bay-Nielsen M, Perkins FM, and Kehlet H. Pain and functional impairment 1 year after inguinal herniorrhaphy: a nationwide questionnaire study. Ann Surg. 2001; 233(1):1–7.
  12. Alfieri S, Amid PK, Campanelli G, et al. International guidelines for prevention and management of post-operative chronic pain following inguinal hernia surgery. Hernia. 2011;15(3):239–249.
  13. Reiner MA and Bresnahan ER. Laparoscopic total extraperitoneal hernia repair outcomes. JSLS. 2016;20(3):e2016.00043.
  14. Franneby U, Sandblom G, Nordin P, Nyren O, and Gunnarsson U. Risk factors for long-term pain after hernia surgery. Ann Surg. 2006;244(2):212–219.

FIGURE 1. Crude annual incidence rates of inguinal hernia diagoses, active component, U.S. Armed Forces, 2010–2019
FIGURE 2. Percentage of those with a pain diagnosis within 1 year following inguinal hernia repair, active component, U.S. Armed Forces, 2010–2019
TABLE 1. ICD-9/ICD-10 procedure codes and CPT codes used to identify inguinal hernia repair procedures
TABLE 2. ICD-9/ICD-10 codes used to identify pain following inguinal hernia repair
TABLE 3. Incident cases and incidence rates of inguinal hernia, active component, U.S. Armed Forces, 2010–2019
TABLE 4. Incidence of inguinal hernia repair following incident inguinal hernia diagnosis, active component, U.S. Armed Forces, 2010–2019

TABLE 5. Rate of pain diagnoses within 1 year following inguinal hernia repair, active component, U.S. Armed Forces, 2010–2019

You also may be interested in...

Article
Sep 1, 2022

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, U.S. Armed Forces, Active and Reserve Components, January 2017–June 2022

NAVAL MEDICAL CENTER CAMP LEJEUNE, North Carolina - As the leading petty officer for Naval Medical Center Camp Lejeune's Community Health Clinic, HM2 Kameron Jacobs is part of the first satellite team to treat service members living with HIV.

This report provides an update through June 2022 of routine screening results for antibodies to the human immunodeficiency virus (HIV) among members of the active and reserve components of the U.S. Armed Forces. During the full 5 and 1/2-year surveillance period, the HIV seropositivity rates for active component service members were 0.21 positives per ...

Article
Sep 1, 2022

Evaluation of the MSMR Surveillance Case Definition for Incident Cases of Hepatitis C

U.S. Marine Corps Lance Cpl. Angel Alvarado, a combat graphics specialist, donates blood for the Armed Services Blood Program (ASBP).

The validity of military hepatitis C virus (HCV) surveillance data is uncertain due to the potential for misclassification introduced when using administrative databases for surveillance purposes. The objectives of this study were to assess the validity of the surveillance case definition used by the Medical Surveillance Monthly Report (MSMR) for HCV ...

Report
Aug 1, 2022

MSMR Vol. 29 No. 08 - August 2022

.PDF | 822.83 KB

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the ...

Article
Aug 1, 2022

Brief Report: Pain and Post-Traumatic Stress Disorder Screening Outcomes Among Military Personnel Injured During Combat Deployment.

U.S. Air Force Airman 1st Class Miranda Lugo, right, 18th Operational Medical Readiness Squadron mental health technician and Guardian Wingman trainer, and Maj. Joanna Ho, left, 18th OMRS director of psychological health, discuss the suicide prevention training program, Guardian Wingman, at Kadena Air Base, Japan, Aug. 20, 2021. Guardian Wingman aims to promote wingman culture and early help-seeking behavior. (U.S. Air Force photo by Airman 1st Class Anna Nolte)

The post-9/11 U.S. military conflicts in Iraq and Afghanistan lasted over a decade and yielded the most combat casualties since the Vietnam War. While patient survivability increased to the high­est level in history, a changing epidemiology of combat injuries emerged whereby focus shifted to addressing an array of long-term sequelae, including ...

Article
Aug 1, 2022

Musculoskeletal Injuries During U.S. Air Force Special Warfare Training Assessment and Selection, Fiscal Years 2019–2021.

U.S. Air Force Capt. Hopkins, 351st Special Warfare Training Squadron, Instructor Flight commander and Chief Combat Rescue Officer (CRO) instructor, conducts a military free fall equipment jump from a DHC-4 Caribou aircraft in Coolidge, Arizona, July 17, 2021. Hopkins is recognized as the 2020 USAF Special Warfare Instructor Company Grade Officer of the Year for his outstanding achievement from January 1 to December 31, 2020.

Musculoskeletal (MSK) injuries are costly and the leading cause of medical visits and disability in the U.S. military.1,2 Within training envi­ronments, MSK injuries may lead to a loss of training, deferment to a future class, or voluntary disenrollment from a training pipeline, all of which are impediments to maintaining full levels of manpower and ...

Report
Jul 1, 2022

MSMR Vol. 29 No. 07 - July 2022

.PDF | 1.67 MB

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the ...

Article
Jul 1, 2022

Brief Report: Phase I Results Using the Virtual Pooled Registry Cancer Linkage System (VPR-CLS) for Military Cancer Surveillance.

A patient at Naval Hospital Pensacola prepares to have a low-dose computed tomography test done to screen for lung cancer. Lung cancer is the leading cause of cancer-related deaths among men and women. Early detection can lower the risk of dying from this disease. (U.S. Navy photo by Jason Bortz)

The Armed Forces Health Surveillance Division, as part of its surveillance mission, periodically conducts studies of cancer incidence among U.S. military service members. However, service members are likely lost to follow-up from the Department of Defense cancer registry and Military Health System data sets after leaving service and during periods of ...

Article
Jul 1, 2022

Establishment of SARS-CoV-2 Genomic Surveillance Within the Military Health System During 1 March–31 December 2020.

Dr. Peter Larson loads an Oxford Nanopore MinION sequencer in support of COVID-19 sequencing assay development at the U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland. (Photo by John Braun Jr., USAMRIID.)

This report describes SARS-CoV-2 genomic surveillance conducted by the Department of Defense (DOD) Global Emerging Infections Surveillance Branch and the Next-Generation Sequencing and Bioinformatics Consortium (NGSBC) in response to the COVID-19 pandemic. Samples and sequence data were from SARS-CoV-2 infections occurring among Military Health System ...

Article
Jul 1, 2022

Suicide Behavior Among Heterosexual, Lesbian/Gay, and Bisexual Active Component Service Members in the U.S. Armed Forces.

  The DOD’s theme for National Suicide Prevention Month is “Connect to Protect: Support is Within Reach.” Deployments, COVID-19 restrictions, and the upcoming winter season are all stressors and potential causes for depression that could lead to suicidal ideations. Options are available to individuals who are having thoughts of suicide and those around them (Photo by Kirk Frady, Regional Health Command Europe).

Lesbian, gay, and bisexual (LGB) individuals are at a particularly high risk for suicidal behavior in the general population of the United States. This study aims to determine if there are differences in the frequency of lifetime suicide ideation and suicide attempts between heterosexual, lesbian/gay, and bisexual service members in the active ...

Article
Jul 1, 2022

Surveillance Trends for SARS-CoV-2 and Other Respiratory Pathogens Among U.S. Military Health System Beneficiaries, 27 September 2020–2 October 2021.

Staff Sgt. Misty Poitra and Senior Airman Chris Cornette, 119th Medical Group, collect throat swabs during voluntary COVID-19 rapid drive-thru testing for members of the community while North Dakota Army National Guard Soldiers gather test-subject data in the parking lot of the FargoDome in Fargo, N.D., May 3, 2020. The guardsmen partnered with the N.D. Department of Health and other civilian agencies in the mass-testing efforts of community volunteers. (U.S. Air National Guard photo by Chief Master Sgt. David H. Lipp)

Respiratory pathogens, such as influenza and adenovirus, have been the main focus of the Department of Defense Global Respiratory Pathogen Surveillance Program (DoDGRPSP) since 1976.1. However, DoDGRPSP also began focusing on SARS-CoV-2 when COVID-19 was declared a pandemic illness in early March 2020.2. Following this declaration, the DOD quickly ...

Article
Jun 1, 2022

Hospitalizations, Active Component, U.S. Armed Forces, 2021

The hospitalization rate in 2021 was 48.0 per 1,000 person-years (p-yrs), the second lowest rate of the most recent 10 years. For hospitalizations limited to military facilities, the rate in 2021 was the lowest for the entire period. As in prior years, the majority (71.2%) of hospitalizations were associated with diagnoses in the categories of mental ...

Skip subpage navigation
Refine your search
Last Updated: July 11, 2023
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on X Follow us on YouTube Sign up on GovDelivery