Skip main navigation

Military Health System

Hurricane Milton & Hurricane Helene

Emergency procedures are in place in multiple states due to Hurricane Milton & Hurricane Helene. >>Learn More

WRNMMC’s participation in APOLLO program furthers cancer research

Image of Two groups of vials on a table. Vials containing DNA samples from studies of the genetic risk for cancer at the Cancer Genomics Research Laboratory, part of the National Cancer Institute's Division of Cancer Epidemiology and Genetics. (Photo by Daniel Sone, National Cancer Institute.)

As cancer survivors, oncologist, researchers, providers and family members celebrated World Cancer Day today, the researchers, providers and support staff at the John P. Murtha Cancer Center (MCC) at Walter Reed National Military Medical Center in Bethesda, Maryland remain focused on the studying not only the effects of the deadly disease, but also best possible treatment options.

The MCC serves as the preeminent cancer research and treatment facility within the Department of Defense (DOD), and has been since the 1990s. In 2012, the center was renamed after Congressman John P. Murtha, a 30 year Marine Corps veteran and long-time advocate for cancer research within the Department of Defense.

The current Director of MCC and its Research Program, Dr. Craig Shriver, is focused on the threat cancer poses on the readiness of the United States Armed Forces. According to Shriver, there are more than 1,000 active duty service members diagnoses with cancer each year, and there are more than 8,000 active duty service members living with a cancer diagnosis. Researchers at the MCC are keenly interested in how cancer affects younger people, since most active duty service members are under the age of 35, Shriver explained.

To combat the effect cancer has on the readiness of the DOD’s mission, MCC has done research into the genetic causes of cancer. According to Shriver, MCC centers have been sequencing the genome of tumors for different cancer since the 1990s. According to Shriver, since the DOD has a disproportionately high number of African American’s compared to the general U.S. population, sequencing of tumors from African Americans with prostate cancer has shown certain genetic risk factors that had not been found previously. “This is research that not only benefits African American service members, but people of African descent worldwide,” says Shriver.

Currently the MCC is using genetic sequencing as part of its participation in the APOLLO (Applied Proeogenomics Organizational Learning Outcomes) research program. According to the National Cancer Institutes’ webpage, APOLLO is part of the Cancer Moonshot initiative, a tri-federal research program that began in 2016 under the leadership of then Vice President Joe Biden. APOLLO brings together the DOD through MCC, the departments of Veterans Affairs; and the department of Health and Human Services through the NCI. According to Shriver the three agencies work together in sharing research and information, as well as publishing the results of the program.

A group of medical researchers in a line, sitting down in front of monitors
Researchers at the John P. Murtha Cancer Center at WRNMMC study the genetic makeup of cancer cells. As part of the APOLLO research program, the Murtha Cancer Center is undergoing studies related to the genetics found in the tumors of cancer patients. The genetic sequencing of these tumors is leading to new discoveries in the treatment of cancer within active duty service members in the DOD. (Photo courtesy of Walter Reed National Military Medical Center.)

APOLLO studies the genetic components of tumors from cancer patients. According to Shriver, every newly diagnoses cancer patient in on of the Murtha facilities are given the option to join the research program. If a patient opts in, their tumor is run through all available molecular platforms looking at its DNA, RNA, and Protein structure.

According to NCI, the data from the APOLLO program will be “curated and made available publicly through the Genomic Data CommonsProteomic Data Portal, and Cancer Imaging Archive.  Using all of the data available (analytical, invasive, noninvasive, and clinical) will enable researchers to study the relationships among these data, validate results, and develop predictive and prognostic models to improve patient care.”

According to Shriver APOLLO uses precision oncology where researchers look to see if there are any special molecular signatures of an individual’s cancer that be targeted with available drugs. Shriver says that tumors of the same cancer type can have different genetic attributes, which might require different treatments. “We don’t treat every patient with colon cancer the same. You identify any unique aspects of the tumor and say, ‘okay this tumor is special in this way, we identified it through the molecular signature found in the APOLLO program’, and we treat it that way,” said Shriver.

After sequencing the genetic makeup of their tumor, a patient’s blood is then sequenced to find the DNA unique to that person. According to Shriver, many young people with cancer have a genetic germline mutation that could cause cancer. And there are 50 different genes that can lead, in isolation or combined, to an increased risk of cancers.

The APOLLO program also shares any information from their research back with the patient. “We have a very unique, almost unprecedented, genetic return of results program,” Shriver said adding “If we identify that service member X has a germline genetic mutation that could affect them, and their children, for increased cancer risk, we tell the patient that. This is unusual for a research program.”

Shriver says that this information sharing is called translational research. The gap between clinical care and research is translated and provides real benefits to patients and their providers through the genome sequencing of the patient’s blood.

The research from the APOLLO program is already starting to have real benefits to not only the DOD, but the United States population at large. According to Shriver, researchers in the program identified a new genetic signature that can distinguish between patients with lung cancer who will do well with a specific treatment from those who may not do well with said treatment. “If 20% of the population don’t do well for conventional treatment, and by sequencing the genetic of the tumor, we can find those patients and move forward with more unique options,” said Shriver.

The signature is intellectual property, and as such a patent is being filed so that it can be commercialized, and a test can go to the market. Lung cancer patients can take the panel test and providers can predict if they will do well with treatment or should try something else.

While the APOLLO program is beneficial for a more hidden side of the causes of cancer, Shriver still encourages known preventative measure should be taken by all active duty service members. Shriver says that avoiding or quitting use of tobacco and nicotine products are a good common knowledge practice.

According to Director of Gynecologic Oncology at WRNMMC, Air Force Col. (Dr.) Yovanni Casablanca, all service members regardless of gender should get the human papilloma virus, or HPV, vaccine which protects against cervical cancer.

Shriver believes genetic sequencing can be helpful to the DOD’s mission in the future outside of cancer research. According to Shriver, genetic sequencing could be utilized at military intake alongside other medical tests, to determine an individual’s genetic risk to certain cancers. “This wouldn’t be us turning someone away based on their sequencing. Instead we can use this information to help a service member who may be higher risk be aware and take proactive steps to mitigate the potential onset of certain cancers,” said Shriver.

For more information about the Murtha Cancer Center, or the APOLLO program, check their websites.

You also may be interested in...

Photo
Sep 28, 2016

Battlefield Medicine Course

U.S. Air Force Senior Airman Michael Triana, left, 347th Operations Support Squadron independent duty medical technician-paramedic, addresses injuries on a simulated patient during a tactical combat casualty care course, in Okeechobee, Florida. The course tests and reinforces participants’ lifesaving medical skills while they are in high-stress, combat scenarios. (U.S. Air Force photo by Staff Sgt. Ryan Callaghan)

U.S. Air Force Senior Airman Michael Triana, left, 347th Operations Support Squadron independent duty medical technician-paramedic, addresses injuries on a simulated patient during a tactical combat casualty care course, in Okeechobee, Florida. The course tests and reinforces participants’ lifesaving medical skills while they are in high-stress, ...

Photo
Sep 26, 2016

Orient Shield

Japan Ground Self-Defense Force medics carry a casualty from an ambulance to a JGSDF helicopter while a U.S. Army medic calls directions during a bilateral medical training exercise.

Japan Ground Self-Defense Force medics carry a casualty from an ambulance to a JGSDF helicopter while a U.S. Army medic calls directions during a bilateral medical training exercise.

Photo
Sep 23, 2016

MEDEVAC Helicopter

It is important for Soldiers to know what to expect when a MEDEVAC helicopter arrives and how to approach the helicopters, load patients aboard and how to interact with their crew chief and flight medic in order to do ground handoffs. (U.S. Army photo by Sgt. 1st Class Matthew Chlosta)

It is important for Soldiers to know what to expect when a MEDEVAC helicopter arrives and how to approach the helicopters, load patients aboard and how to interact with their crew chief and flight medic in order to do ground handoffs. (U.S. Army photo by Sgt. 1st Class Matthew Chlosta)

Photo
Sep 20, 2016

Big Rescue Kanagawa 2016

Navy Lt. Cmdr. Reginaldo Cagampan, left, and Navy Hospital Corpsman 1st Class Rocky Pambid, members of the U.S. Naval Hospital Yokosuka Emergency Response Team, treat a simulated patient during the 2016 Big Rescue Kanagawa Disaster Prevention Joint Drill in Yokosuka city, Japan. Multiple agencies took part in the drill including the U.S. Navy, Army and Air Force, as well as personnel from the Japan Self-Defense Force and Japanese government agencies. (U.S. Navy photo by Greg Mitchell)

Navy Lt. Cmdr. Reginaldo Cagampan, left, and Navy Hospital Corpsman 1st Class Rocky Pambid, members of the U.S. Naval Hospital Yokosuka Emergency Response Team, treat a simulated patient during the 2016 Big Rescue Kanagawa Disaster Prevention Joint Drill in Yokosuka city, Japan. Multiple agencies took part in the drill including the U.S. Navy, Army ...

Photo
Sep 20, 2016

Ukrainian soldiers on field litter ambulances

A Ukrainian Soldier uses hand signals during a ground guide exercise of field litter ambulance familiarization on the driving range at Yavoriv Training Area, Ukraine. A team of medics and a mechanic from 557th Medical Company and 212th Combat Support Hospital are working together to conduct field littler ambulance and medical equipment  familiarization with the Ukrainian military. (U.S. Army photo by Capt. Jeku)

A Ukrainian Soldier uses hand signals during a ground guide exercise of field litter ambulance familiarization on the driving range at Yavoriv Training Area, Ukraine. A team of medics and a mechanic from 557th Medical Company and 212th Combat Support Hospital are working together to conduct field littler ambulance and medical equipment ...

Skip subpage navigation
Refine your search
Last Updated: July 11, 2023
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on X Follow us on YouTube Sign up on GovDelivery