Images in Health Surveillance: Ammunition Ship Explosions in Papua New Guinea and Solomon Islands, 1944 and 1945

Image of Article 10 Figure. Mishandling military explosives and ammunition has a long history of causing mass casualties.

Seeadler (Sea Eagle) Harbor on the island of Manus in Papua New Guinea was a vital logistics hub for the invasion of the Philippines during the Second World War. The USS Mount Hood (AE-11) was unloading munitions from all five holds into landing crafts medium while at anchor in the harbor center in November 1944. The ship suddenly exploded on November 10, 1944.1 The blast involved more than 3,800 tons of munitions and killed all 350 on board ship and surrounding LCMs, in addition to 82 crew members on the USS Mindanao (ARG-3)—over 300 meters away. No identifiable human remains were recovered from the Mount Hood. An additional 371 men were wounded.

The largest piece of the Mount Hood’s wreckage located was 30 meters long, submerged in a 26 meter-deep crater in the reef. Twenty-two other ships or landing craft were either sunk or severely damaged by the blast. Subsequent investigation concluded “the most likely cause of the explosion was careless handling of ammunition.”

Mishandling military explosives and ammunition has a long history of causing mass casualties. Ammunition ships were particularly high-risk environments for their crews, especially during the laborious process of transferring inherently hazardous explosives. The destruction of ammunition ships in the Indo-Pacific region during the Second World War are only marginally part of our military history as their losses were actively suppressed due to wartime concerns about security and morale.

Just over two months after the explosion of the Mount Hood, the ammunition ship USS Serpens (AK-97) exploded, on January 29, 1945, while loading depth charges off Lunga Point, near Honiara, Solomon Islands. The casualties of that explosion included 250 U.S. Coast Guard crew, Army stevedores, and a medical officer. Two crew on the ship survived the blast in a bow section that continued to float temporarily after the blast.

Although the cause of the Serpens explosion remained unclear, the U.S. Navy noted that the loss was not due to enemy action but an “accident intrinsic to the loading process.” The explosion of the USS Serpens remains the greatest single mortality event in the history of the U.S. Coast Guard and is marked by a mass grave and monument in the Arlington National Cemetery.2

These accidental ship explosions during the Second World War caused mass casualties without any enemy intervention. Lessons were uncertain and indefinite, as any forensic evidence was destroyed by the blast wave. Wartime secrecy as well as bureaucratic disinclination for admitting failure has made these accidents much less well-known then when the same munitions were used by troops to defeat Imperial Japan.3

Caution with ammunition is always indicated, but recent events, particularly with explosions at ammunition depots in the developing world—Lagos in 2002, Maputo in 2007, and Brazzaville in 2012—should serve as an important reminder that weapons have the potential to kill friend and foe alike if mishandled. Ammunition is both a disarmament as well as a public health danger that requires unremitting vigilance.

Author Affiliations

Australian Defence Force Infectious Disease and Malaria Institute, Gallipoli Barracks, Enoggera, Queensland and University of Queensland, School of Public Health, Brisbane, Herston

Acknowledgments

The author, of both Images in Health Surveillance featured in this issue, acknowledges the service and sacrifice of all those who served in the military during the Second World War and thanks the many unnamed military officers, scientists, historians, and medical librarians who have unselfishly provided data and ideas for these manuscripts, especially the librarians at the Australian Defence Force Library at Gallipoli Barracks, Queensland.

Disclaimers

The opinions expressed are those of the author and do not necessarily reflect those of the Australian Defence Force nor the Department of Foreign Affairs and Trade.

No specific funding was given for either work published in this issue of MSMR.

The author does not claim any conflicts of interest.

References

  1. Gile CA. The Mount Hood explosion. United States Naval Institute Proceedings. 1963;89(2):720-725. Accessed Mar. 5, 2025. https://www.usni.org/magazines/proceedings/1963/february/mount-hood-explosion 
  2. Willoughby MF. The U.S. Coast Guard in World War II. Naval Institute Press;2016.
  3. Condon-Rall ME, Cowdrey AE. The Medical Department: Medical Service in the War Against Japan. U.S. Army Center of Military History;1998.  

You also may be interested in...

Report
Sep 1, 2023

MSMR Vol. 30 No. 9 - September 2023

.PDF | 1.30 MB

The September 2023 MSMR provides the annual update of routine screening for antibodies to HIV among the active and reserve components of the U.S. Armed Forces; followed by a serological survey of Ross River virus (RRV) infection among U.S. Marine expeditionary forces who train in Australia; followed by a Surveillance Snapshot of the 10 leading ...

Article
Sep 1, 2023

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, U.S. Armed Forces, Active and Reserve Components, January 2018–June 2023

This report provides an update through June 2023 of routine screening results for antibodies to HIV among members of the U.S. military. From January 2018 through June 2023, approximately 7 million U.S. military service members (active component, reserve component, and national guard) were tested for HIV antibodies; 1,502 were identified as HIV ...

Report
Aug 1, 2023

MSMR Vol. 30 No. 8 - August 2023

.PDF | 1.02 MB

The August 2023 MSMR provides the most recent data from the active surveillance program for acute respiratory disease and Group A Beta-Hemolytic Streptococcus among U.S. Army basic trainees; then summarizes the case report of an extensively resistant E. coli in a returning traveler at Hawai'i's Tripler Army Medical Center; followed by a Surveillance ...

Article
Aug 1, 2023

Case Report: Complicated Urinary Tract Infection Due to an Extensively Resistant Escherichia coli in a Returning Traveler

This article presents the medical case report of a 76-year-old man who returned to the U.S. following overseas travel and was admitted at Hawai'i's Tri­pler Army Medical Center with a complicated urinary tract infection due to an extensively resistant strain of E. coli.

Article
Aug 1, 2023

Active Surveillance for Acute Respiratory Disease Detected No Outbreaks at Four U.S. Army Basic Training Installations in 2022

This article presents the 2022 results of the active surveillance program for acute respiratory disease and Group A Beta-Hemolytic Streptococcus conducted by the Defense Centers for Public Health-Aberdeen at the four Army installations responsible for basic combat training or one-station unit training. This ARD surveillance program rapidly monitors, ...

Report
Jul 1, 2023

MSMR Vol. 30 No. 7 - July 2023

.PDF | 1.30 MB

This continuation of the June issue, which published the annual quantification of health care provided by the Military Health System, continues with the impacts of various illnesses and injuries in 2022 among deployed service members; medical evacuations out of theaters of military operation; health care provision to non-service member MHS ...

Article
Jul 1, 2023

Medical Evacuations out of U.S. Central and U.S. Africa Command Among Active and Reserve Components, U.S. Armed Forces, 2022

This report summarizes the nature, numbers, and trends of conditions for which military members were medically evacuated from the U.S. Central Command (CENTCOM) or Africa Central Command (AFRICOM) operations during 2022, with historical comparisons to the previous four years.

Article
Jul 1, 2023

Morbidity Burdens Attributable to Various Illnesses and Injuries Among Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2022

This annual estimate of illness- and injury-related morbidity and health care burdens on the U.S. Armed Forces and MHS updates previous analyses of these burden distributions among active and reserve component service members in deployed settings. This report focuses on the health encounters of service members during deployment to U.S. Central Command ...

Refine your search